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Abstract. In this work we report Davydov soliton dynamics at 300 K using the partial
dressing emsatz state introduced by Brown and lvic. As in the case of Davydov's | D)
ansatz we found that the window for the appearance, in the partial dressing case, of
slowly dispersing solitary waves in the parameter space is shifted to smaller non-linearities
with increasing temperature. However, in the partial dressing approximation no stable
solitons show up. Since the results of studies on the thermal stability of Davydov
solitons using different models disagree with each other even guaiitatively, we give some
comparisons between resulls obtained using four different approximations to the dynamics
with quantum Monte Carlo (om<) resulis found in the literature. We find that Davydov’s
method {{ Dy} state, averaged Hamiltonian) leads to quantitatively incorrect results, but
reproduces the qualitative trends correctly. All other models considered by us (| Dz) state
with thermal phonon population, Langevin equation and partial dressing state) failed to
reproduce OMC results even qualitatively.

1. Introduction

Many biological processes are associated with an energy transfer through proteins,
where this energy is released by hydrolysis of adenosine triphosphate (ATP). The
mechanism of this energy transport is not quite clear. As an alternative to electronic
mechanisms one can assume that the energy is stored as vibrational energy in the
amide-I mode (CO stretch) of a polypeptide chain. Following Davydov’s idea [1,2]
one can take into account the coupling between the amide-I vibration and the acoustic
phonons of the lattice. Through this coupling non-linear terms appear in the equations
of motion. In this way the energy can be transported in solitary waves. Direct
expetimental evidence for the existence of such solitons in proteins js still missing.
This is due to the complex structure of proteins, which makes such measurements
very difficult. However, in acetanilide crystals a substructure with chains of hydrogen
bonds similar to proteins is present. In low-temperature infrared and Raman spectra
of this material a pew band in the anide-I region appears. Up to now this band couid
only be explained with the help of a model similar to the Davydov soliton concept in
proteins [3]. In this case the CO oscillators are coupled to optical phonons and the
soliton would be pinned. Recent experiments, however, suggest that a conventional
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moede strongly coupled to the phonons might be responsible for the observed new
band [4].

At zero temperature it has been confirmed theoretically that Davydov solitons exist
for parameter values appropriate for proteins [5]). The investigation of temperature
effects led to controversial results. Halding and Lomdahl {6] found stable pulses at
T = 310 K using classical molecular dynamics for peptide units moving in a Lennard—
Jones potential. Lomdahl and Kerr [7] and others [8] used the |D,} ansatz together
with a damping and a noise term to introduce temperature and found no stable
solitons at 310 K at a specific set of parameters. Bolteraver [9] argued that their
classical thermalization scheme might lead to too large a transfer of energy into the
quantum system (oscillators). Cottingham and Schweitzer [10] applied perturbation
theory to the Hamiltonian after partial diagonalization and could show (again for
one set of parameters) that the soliton lifetime at 300 K is too short for biological
processes. In our previous work [11-13] we prepared the lattice in a thermally excited
state prior to the soliton starting. We compared our results with those of [7] and
found agrecment between the models if in the Langevin mode! [7] the lattice is
thermally equilibrated before the soliton starts. We could show that in a window
in the parameter space, which might well be realistic for proteins, travelling solitons
exist at 300 K (see also [14] for a recent review).

Brown e al [15] have shown that the |D,} state ansatz does not reproduce
the dynamics of the exactly solvable small-polaron limjt (dipole-dipole coupling
neglected). Davydov [2] introduced a more sophisticated ansatz state (| D)), which
allows for quantum effects in the lattice. However, he used the energy expectation
value for | D,) as classical Hamiltonian function to derive equations of motion [2]. It
was shown that with these equations | D} does not reproduce the small-polaron limit
{15] either. With these equations of motion and a thermally averaged Hamiltonian,
Davydov {2] could show within the continuum limit that solitons exist at 300 K.
Cruzeiro et al [16] reached the same conclusion numerically without making use
of Davydov’s approximations, but using also the thermally averaged Hamiltonian
as a classical Hamiltonian function. Brown and Ivic [17] have introduced a third
ansatz state in which the phase mixing (‘dressing’) between the amide-l oscillators
and the lattice phonons is intermediate between the classical |D,) and the quantum
|D,} ansatz of Davydov. We found [18] that using this state at T = 0 K no
travelling solitons exist, but only dispersing waves were found for a non-lincarity
parameter less than 300 pN (for proteins this parameter is usually assumed to be
around 60 pN). In this work we present numerical results obtained using the partial
dressing ansatz at 300 K. This ansaiz is interesting since at 0 K the results are
qualitatively similar (appearance of coherent structures at very high non-linearities in
both models) to those from the betier | D) state and, in contrast to |D,), from the
partial dressing state analytical results can be derived in the continvum limit [17].
Further, the inclusion of temperature effects into the partial dressing model is more
straightforward than in the | D) case.

Mechtly and Shaw [19] and Skrinjar et a! [20] could derive new equations of
motion for | D)} with the help of quantum-mechanical methods. These equations of
motion reproduce the small-polaron Emit. However, in the general case, also this
ansatz state is still approximative. In [19] as well as in our work [18] it is shown that
at T = 0 K the window for travelling solitons in the |.D,) state occurs in regions of
the parameter space that cannot be applied to proteins (soliton formation threshold
X > 150 pN). In the first paper of this series [21] we also used the Langrangian
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method described in [20] to obtain correct equations of motion for the |D,) ansatz
state from the thermally averaged Hamiltonian derived in [2, 16]. In this investigation
[21,22], as well as in our previous studies using the |I},} state, summarized in [22],
we found that Davydov solitons should be stable at 300 K if the spring constant
of the hydrogen bonds is larger than previously assumed. There are doubts if the
Davydov concept of using a thermally averaged Hamiltonian to derive equations of
motion from it is in agreement with statistical mechanics. There is the possibility that
it may lead to results that are even qualitatively misleading. Therefore we present in
section 4 a comparison of our results obtained with different models with the exact
quantum Monte Carlo results of Wang et al [23].

2. Methods
21. The Hamiltonian
The Hamiltonian as introduced by Davydov [1] is
A=3" (Eu&;‘;&n — J (8Fa,, +at,,4,)
”

a2
By

+ o

W, . . R - ada .
+ B2l — 4V X8 (Gusa = ) ). 0

In equation (1) &} (&, ) are the usuval boson creation (annihilation) operators [5] for
the amide-I osciliators at sites n (see figure 1). From infrared spectra the excitation
cnergy of an isolated amide-I oscillator can be deduced (E; = 0.205 ¢V). Usually for
all parameters in equation (1) site-independent mean values are used. The average
value for the dipole-dipole coupling between neighbouring amide-I osciliators is
J = 0.967 meV. The average spring constant of the hydrogen bonds is vsually taken
to be W = 13 N m~! from crystalline formamide where the molecules also form
bydrogen-bonded chains. In our preliminary paper [11] we used W = 76 N m~1,
which is the spring constant for the hydrogen bonds in the hydrogen carbonate dimer,
Py, is the momentum and §, the position operator of unit n. The average mass M is
taken as that of myosine (M = 114m,, m, = proton mass). The energy of the CO
stretching vibration with the oxygen atom taking part in hydrogen bonds is a function
of the iength » of the hydrogen bond (E = E,+ Xr). For X the experimental
estimates are 35 and 62 pN. Ab initio calculations on formamide dimers usually
lead to X = 30-50 pN (see e.g. [14] for a review and references). In the case of
comparisons with quantum Monte Carlo resuits [23] we had to introduce in addition
to cyclic boundary conditions also the so-called symmetric interaction. In this case
the oscillator-lattice interaction term is given by (assuming X w0 be equal for both
hydrogen bonds neighbouring an amide-I oscillator)

Vie= XD 63 &,(dogr — o) )

which is usually considered as rather unrealistic; however, it was used in [23] and
thus we had to introduce it also in order to make comparison possible.
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Figure 1. Schematic picture of a hydrogen-bonded channel in a protein.

The Hamiltonian [1, 2] in second quantized form including djsorder is given by

B =3 [Epafa, —J, (47,8, + 85 8.4)]
n

+ Y hwy (Bzf‘»k + 14> B(b + Bt)&:an) 3)
k n

B = ._.X....F. 1 vz U"’*‘l’k _ Unk
w= o \ma) \FE )

5}'; (b,) are creation (annihilation) operators for acoustic phonons of wavenumber
k. The translational mode has to be excluded from the summation. Note that in
equation (3) we use again the asymmetric interaction model where only the coupling
of the oscillator n to the hydrogen bond between n and n 4 1 in which the oscillator
takes part is considered. Here «v; denotes the eigenfrequency of the normal mode
& and U contains the normal mode coeflicients. «w and U are obtained by numerical
diagonalization of the matrix V with elements

Vnm = {[Wn(l - 6n,N) + W, —1(1 - 6:11)]671.711.
- Wn(l - 'SnN)am,u+l - Wn-—l(l - 6nl)6m,n—1}(Mn.Mm)_l/2' @

The form of V implies that we use free chain ends and N units. Cyclic boundary
conditions {16], which we need for comparisons with [23], lead to the form

Vim = {IW, + W, _ 06,0 — Wob oar = W 16, WM M, )~/ )

for this matrix, where now the site indices have to be taken modulo N. For the
symmetric interaction the matrix B is given by

B k___ﬁ( 1 )IIZ Ungrp  Un-i ©)
= ) W

For the solution of the time-dependent Schrédinger equation in the literature
different ansatz states can be found, as well as different models for the inclusion of
temperature effects. Those which we applied in this work will be briefly described in
the following subsections.
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22. The |D,} ansatz state

The most simpie possible ansatz is the displaced oscillator state gnsatz (|.D,)) of
Davydov [1]:

D) = 3t (1)82(0), exp (Z[bméz - z(t)ékl)m)p- %
n k

Here o/,{1) is the probability io find a vibrational quantum at site », and the b, are
the coherent state amplitudes for normal mode k. Thus in this ansaz it is assumed
that the oscillators, regardless of their excitation state, create via the interaction
the same number of vibrational quanta in the normal modes of the lattice. In this
approximation the lattice variables are treated classically. In (7), |0), denotes the
exciton vacuum and |0}  the phonon vacuum. Davydov [1,2] formed the expectation
value of the Hamiltonian (1) with |D,} and used this expectation value as classical
Hamiltonian function. In this way he oObtained the equations of motion. Kerr
and Lomdahl [24] have shown that these equations can be obtained also by purely
quantum-mechanical methods and also for states of more than one quantum [25].
Explicit forms of the equations of motion without inclusion of temperature effects
can be found in [12,13]. The |D,) state reproduces the lattice dynamics for J = 0
correctly, but leads to an incorrect phonon energy [15]. In the next two subsections
two models for the inclusion of temperature into this ansefz state, which are used in
this work, are described.

221. Thermal population of the lattice phonons. In our model for the inclusion of
temperature effects we first solve the decoupled lattice problem (X = 0) [13], which
is simply a chain of coupled harmonic oscillators. As initial excitations we distribute
an energy of NkgT (kg is Bolzmann's constant) on the normal modes using Bose-
Einstein statistics. Half of this energy was distributed as potential, the other haif as
kinetic energy. The analytically given lattice displacements due to thermal motion are
separated from the ones originating from exciton—phonon coupling (see [12,13,22]
for details of the formalism).

In this way the heat bath introduces two oscillating phase factors at J. These
oscillations occur in both space and time. The spatial oscillation is due to the normal
mode coefficients. With increasing temperature the admixture of higher normal modes
increases, which have more spatial oscillations due to their larger number of nodes.
Thus temperature has the same net effect as disorder in the site energy E;, which
can be played back to exactly the same mathematical structure [12]. However, in
addition we have here also oscillations in time, which become faster with increasing
temperature due to the higher frequencies (w; ), which become more important. Since
the phases at J are proportional to the coupling constant X one expects a threshold
value for X. If X becomes larger than this threshold the soliton should be destroyed.

22.2. Langevin equation. In the Langevin ansaiz for the treatment of temperature as
reported by Lomdahi and Kerr [7,24,25], a damping and a random force term are
added to the equations of motion:

iﬁ'dn = _J(an-i-l + an-—l) + X(Qn-{-l - Qn—l)an

&)
M{in = W(qn-l-l - zqn + Qn—‘l) + X(ldn+l[2 - {an—-liz) - quu + Eﬂ.(t)‘
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Note that here we have already introduced the symmetric interaction term necessary
for the comparison with QMC results [23]. The correlation function for the random
forces is

{(F(x,1)F(0,0)) = 2MkgTT[§(x)/a]é(t) &)

(a is the lattice constant). In this case our equation of motion for the lattice
displacements becomes a Langevin equation. The random forces are assumed to
follow a normal normal distribution. The effect of the two additional terms in the
equations of motion is to drive the system into thermal equilibrium with a time
constant I'. For the time constant we use the lowest non-zero phonon frequency of
the lattice as suggested by Lomdahl and Kerr [7, 24, 25]

“min
I = by = S0, (10)

23. The |D,) ansatz state

The | D,} ansatz for inclusion of temperature in Davydov’s approximation for solution
of the time-dependent Schrédinger equation is

|Dy,v) =3 an(Dak10)18,, v). (11)

Here again |0}, is the exciton vacuum, and |3, , v} a coherent phonon state. For the
one-quantum oscillator states used here 3", |e/,|* = 1 holds. To include temperature
approximately we assume, as in [16] that a phonon distribution is present in the lattice
where each normal mode is occupied by v, quanta. All possible distributions |v) are
considered in the thermal average of the Hamiltonian. We do not consider a thermal
distribution of amide-I quanta since at 300 K the Boltzmann factor implies that only
3 of 10000 amide-I oscillations would be thermally excited. Thus one can neglect a
possible thermalized soliton distribution in the system too, since presence of solitons
requires first of all amide-1 excitation. Then

|8y v} = exp (Zlbnk(t)f‘if - Zk(t)ﬁkl) |} (12)
k

where the b,,(t) are the coherent state amplitudes. The equations of motion are
derived with the Euler-Lagrange formalism following [20] and are given in detail in
[18,21]. This methed introduced by Davydov was criticized by several authors as being
inconsistent with statistical mechanics, since equations of motion are obtained from
a thermally averaged Hamiltonian. However, we feel that it might still be a reliable
approximation to the real dynamics under physiological temperature. To investigate
this we also performed with this method a comparison with quantum Monte Carlo
simulations.
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24. The partial dressing ansalz

Brown and Ivic [17] have introduced a modified ansatz state, which js called the | D} or
partial dressing state. The | D} states are a subset of the | D) states discussed above,
where a fixed degree of phase mixing between phonons and excitons is incorporated

(17
1Dy = 3" e (0a10), exp (E[ LB — B (6)B, 1) O (3
n k

Here the operators are given by

&l =@, exp (5ZBM(E;' - Bg))

b, = b, + GZB éta,

(14)

and § is the dressing factor. The coefficients in the | D) state are related to those in
| Dy) by

a =a ~18 bh(1) — oY
(1) n(f)exp( z ;Bnk[ (%) ;,(f)l) a5

b (1} = —86B,; + bi(1).

In this expression we used the fact that B is real or can be chosen as real via the
phases of the normal modes. The total energy is given by

E =) [Ey-6(2-8)fillanf + Z:,M (AR

L CA ML LY

+2(1- 6)Zhwk B, Re(b})[ar]? (16)
the small-polaron binding energy f, by [17]

fu= ; B}, a7
and the scaled oscilator coupling by

J! = J, exp ( - 1823 (B - B,&I,k}z). (18)
k

The dressing factor & can be obtained by minimization of the averaged total energy
[17] according to equation (4.12) of [17]. We have computed & for T = 0 K in a
periodic chain. The results [18] show that for 0.8 meV < J < 1.2 meV & varies
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between 0.76 and 0.97, where & decreases with increasing J. With increasing non-
linearity § increases also; however, the larger W becomes, the smaller is the variation
in 8, and the larger is its value. Thus for increasing J and decreasing X and W the
| D) state approaches the | D,) state (§ = 0), while for decreasing J and increasing X
and W the | D) state approaches the small-polaron limit (§ = 1}. For J = 0.967 meV
and W = 10 N m~, § varies by ~ 0.15 in the range 0 < X < 200 pN. For X =,
§ ~ 0.796 is obtained; and for X = 200 pN, é ~ 0.944. For X = 60 pN we obtain
in agreement with Brown and Ivic [17] § ~ 0.81. Thus for the usually used values
of the parameters the | D) state is closer to the small-polaron limit than to the {D,}
state.

Brown and Ivic [17] derived the equations of motion for the | D) state with the
help of the time-dependent variational principle. However, in their equations for the
time derivative of a], this variable occurs also on the right-hand side as an integrand.
Thus numerical simulations would be difficult. The term that leads to technical
difficulties appears in the equation for &,.(¢)} in [17}:

[ exploiontt = 001 By grla ()P 1)

Integration by parts yields
oy [ oxpleiv (2= ) T Bl (0P 0t + 3 Bl (F
n k
— exp(—iw 1) 3 B, la, (O)F. @)
Thus b (t) is finally given by

L(t) = ( £(0) - 625;;,1(1:,(0)?) exp(—iwy 1) + 65" B, lat (D2

t
—iw, jo explioy (£ — )] 3 By plal ()P, @1)

For numerical simulations a suitably small time step r is introduced. During
this time step (or half of it as in the Runge-Kutta method) the integrand is linearly
interpolated. Thus at time {7 we obtain

(1) = Ap exp(—iwy 1) + Cp({) — oy exp(—iwy 7)Y Bype Dyy(1) (22)

where

Ay =b(0) - 8Y_ B,les (0]

23
Cr() = 8 Bpylay(DF @)
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and

Do (1) = Doy (1-1) + (7 /D En (D) + Epr(1-1)]
D, (0) =0 (24)

E,. (1) = exp(iwy I7)[al, (D]

For T" = 0 K the initial phonon data are 4,(0) = 0. After computation of a},({) and
bi(1) at time Ir the time derivative of o), (I} can be calculated,

iha! (1) = [Ey— 8(2— 8) f,Jaf (D) — Jhaly (D) = T _yalfy(D)
+2) hwy B Re[bi({)]ay (1)
k&

+25(1 - 8) Y hw, By Borialn(DFa (1), (25)
mk R

Note that Refr] and Im[z] denote real and imaginary part, respectively, of quantity
2. From the time derivative of a! () then el (! + 1) can be computed and then
b%.({+ 1). In practice, as usual a gauge transformation is performed,

a, (1) = ay (t)exp[i( Ey/R)1] , (26)

which removes the term containing E, and thus the fast oscillating part of . Finaily
from b,, = —6B,; + b} the momenta p, and displacements ¢, of the fattice units
can be obtained:

Pu() =Y _(AM, w ) Y?U, e, (D Imib,, ()]

mhk

172
w0=3 (5) Vetlan(DF Relbs(D)]

mk

@7

Typically a time step of = = 5 f5 was used in our simulations at 7 = 0 K [18] with
2 Runge-Kutta method correct up to fourth order. In typical cases (M = 114m,,
W =13 Nm™1, J = 0.967 meV, X = 240 pN) for a periodic chain of 50 units within
70 ps the error in total energy was less than 50 peV (~ 0.02% E,) and the norm
is conserved to better than 4 x 10~*. In this case § = 0.9016 and the translational
mode was kept unpopulated.

As already discussed in the paper by Brown and Ivic [17] the inclusion of
temperature enters in the determination of §, where a thermal average s involved,
via the quantity

fiw
5,0 = § 5Bk = Byt (5@%) 28)

and thus in J, in form of a Debye—Waller factor

J(T) = J, epl-85,(1)]. 9)
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Further in the equations of motion temperature appears directly in the phonon initial
data b%(0). Approximately these can be obtained in the same way as for [D,)
dynamics. One can populate all modes (except the translational one) of the lattice
corresponding to a Bose-Einstein distribution and solve the dynamical problem of
the decoupled lattice. With p, and ¢, at some arbitrary time 1, (the results do
not depend on ¢, as shown previously [11]) one can calculate (for uniform masses:
M, = M)

1/2
Refth (O] =3 (152) Unaatto)

. 2 (30
(b, 0] = 3 (grgms ) Uaspalto)

and usc these values as input for the time simulation. As in the case of | D) dynamics
one has to note that, the larger X is, the smaller the time step has to be chosen.

In previous work we have shown [18] that in contrast to |D,} and |D,} no real
travelling soliton shows up. Only from X = 180 pN can one speak of a slowly
dispersive solitary wave. For X = 260 pN a pinned soliton is observed numerically
at T = 0 K. For the | D) state the parameter space that allows soliton formation
is very small and at rather large values of X. Thus if the [D} state were to be
a better approximation to the exact solution than |D,}) or |D;) one would have to
conclude that the Davydov soliton cannot exist in proteins already at T = 0 K
However, the |D) states are a subset of the |D,) states and the |D,) equations
{18,20] are derived with the time-dependent variational principle as well as the | D)
states [17). Therefore the |D,) dynamics should be a better approximation to the
exact ones than the |D) dynamics. If the |D) dynamics were to approximate the
exact solution better, then |D,} dynamics would numerically reduce to | D) dynamics,
which is not the case. But since the general trend concerning soliton stability regions
is qualitatively similar in [D) and |I},) dynamics, the partial dressing state is still an
important approximation since in contrast to {D,) it allows analytical considerations
in the continuum limit [17]. Therefore it is worth while to study temperature effects
also in the |D) approximation, which is the subject of the next section. We could
repraduce the 6 value for T = 0 K given in [17] (cyclic chain, symmetric interaction,
numerical calculation of eigenvectors and eigenfrequencies) for a chain of 1000 (6
depends on the chain length) sites to an accuracy of three digits and for T = 300 K
we find § = 0.43.

3, Effects of temperature in the partial dressing state

We have performed dynamic simulations on chains of 50 units starting from a one-site
excitation at unit 49 at a temperature of 300 K using the asymmetric interaction ansatz
and free chain ends. The time step was 5 fs and the norm was conserved during a
typical simulation through 24 ps (M = 114m,;, J = 0.967 meV, X = 140 pN,
W =30 N m!, T =300 K) to better than 4 x 10~ the energy error was less
than 70 peV. In this case the dressing factor was 0.648 and the simulation time for
one run on our Cyber 995E computer was 600 CPU seconds. These errors become
somewhat larger for larger X and very much smaller for smaller X (e.g. in case of
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X = 60 pN the dressing factor is 0.588, the norm error less than 3 x 10~%, and the
energy error less than 0.3 peV). We varied the values of W and X. The results are
shown in figure 2, where each circle corresponds to a simulation performed.

" 100

80

90 |

sod © o0 ©

W (N/m)

an < < Q

(b} T = 300E
o4 © (o] (o]

20 60 oo 140 180
X {pN)

Figure 2 Survey of the (X, W) parameter space using the partial dressing model at
@ T=0K () T =300 K (open circles denote dispersive behaviour of the initial
excitation, crossed black circles indicate formation of slowly dispering solitary waves and
crossed open circles indicate pinning of the initial excitation). Afl simulations started
from a one-site excitation and the asymmetric interaction as well as free chain ends were
used.

We show the results for 300 K together with those for 0 K published previously
[18). It is obvious from the figure that for both temperatures no true solitons could
be observed. However, in the | D) state model the same phenomenon as for the | D,)
ansatz is present: the soliton or in this case solitary wave stability window is shifted
to smaller values of X when the temperature increases. Also at high temperature the
region of pinned excitations is much larger than at 0 K. The border between regions
of dispersing and localized excitations is for both temperatures roughly linear. This
border line becomes shifted by roughly —80 pN in X in a nearly parallel way when
temperature increases. Thus the basic discrepancies between | D} and |D,) are, first,
that in the | D) model only solitary waves show up while in the |D,) state also stable
solitons are present, and, secondly, that the shift of solitary wave stability to smaller
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Figure 3. Time cvolution of the excitation
probability |an{t)|> from an initial excitation at
site 49 in a chain of 30 units as function of site at
300 K, using the partial dressing ansarz, asymmetric

e tips) interaction, free chain ends, W = 30 N m~!
. and (@) X = 60 pN, (5) X = 100 pN and (¢)
X = 140 pN.

X values with increasing temperature is less pronounced in the | D) state compared
to | Dy).

In])ﬁgure 3 we show some explicit examples of the dynamics obtained for
W = 30 N m~! and some values of X. Figure 3(a) shows an example of clearly
dispersive behaviour for X = 60 pN. For X = 100 pN (figure 3(b)) we sece that a
dispersive solitary wave is formed, which has already lost most of its intensity after
24 ps. At X = 140 pN (figure 3(c)) the solitary wave is more stable and its velocity
much reduced. However, it is obvious that it is still slowly dispersing. Close to the
end of the simulation it scems that it splits into two separate waves where one is
moving further into the chain while the second one seems to be pinned.

Obviously there is some very qualitative similarity between the results obtained
with the |[D} and the |D,) state. The advantages of the [[J) state ansasz are
clearly that the introduction of temperature effects is straightforward and that in the
continvum limit analytical solutions can be obtained. Both are not the case for the
| D,) state ansarz. However, it seems from the results that the higher flexibility of the
|Dy) state concerning the coherent state amplitudes leads to conclusions that differ
considerably from those drawn from the |D} state simulations. Therefore it might
be dangerous to use, for example, analytical | D} state results to discuss properties of
Davydov solitons or the question of their thermal stability. However, the temperature
model introduced by Davydov for | D) is considered to be inconsistent with statistical
mechanics. Since it might still give qualitatively correct results we present in the next
section a comparison of different dynamic models for the inclusion of temperature
effects with known exact results from quantum Monte Carlo calculations reported by
Wang er af [23].

4. Comparisons with exact quantum Monte Carlo results

Wang et al [23] reported the results of quantum Monte Carlo (QMC) simulations on
the Davydov Hamiltonian. These results should describe the equilibrium state in
principle exactly, restricted only by numerical inaccuracies, which can be controlled.
They applied the parameters usually used in the literature (J = 0.967 meV,
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W=13Nm!, X =6 pN M = 114m,), cyclic boundaries, the symmetric
interaction, and rings of 25 sites. They determined for each of their configurations
the excitation site n,, and rotated all coordinates such that this site is in the middle
of their lattice. Then they computed the average (A, ) of the lattice displacements

An = Qpy1— 9p-1- (31)

Here n refers to the rotated coordinate system, where the excitation site ng is always
in the centre. We implemented cyclic boundaries and symmetric interaction into
our time simulation programs, started from a random distribution of one amide-I
vibrational quantum and performed a time average of the same quantity with which
Wang et al performed their ensemble average. We determined n, in each time step
as the site where the excitation probability [a,(¢)[? is largest. In this way after
a sufficient number of time steps (convergence of {A,)) we should obtain resuits
comparable with those of Wang e al [23]. We want to emphasize again that, in
order to make this comparison possible, we used for all computations reported below
the symmetric interaction and cyclic boundary conditions. Im [23] it is reported
that at 2.8 K coherent structures are obtained. In this case from their figure 1
we estimate a maximum of {A,) at n = n; of ~ —0.07 A, For T = 7.0 K
they observe that this coherent structure starts to break down, leading at 11.2 K to
localized structures comparable to small polarons (this might also be interpreted
as an Anderson localization originating from increasing disorder due to thermal
fluctuations). For 7.0 K the maximum of {(A_) is found to be ~ —0.08 A and
~ —0.09 A for 11.2 K [23]. The latter value is already close to the infinite-temperature
limit of ~ —0.095 A [23].

In figure 4 we show our results obtained with the | D,) state and Davydov’s model
for temperature effects, but using correct equations of motion 25 given in the previous
section. We followed the dynamics over a period of 6 ns, corresponding to 3 000000
time steps. The calculation for one temperature had o be done in six runs, where
only one of these six runs already requires 7.7 CPU hours computation time on a
Cyber 995E computer from Control Data Corporation (500000 time steps each run).
Typically (7" = 11.2 K) the error in total energy in such runs is ~ 3 neV and the
norm error is less than 0.05 ppm (parts per million). We see from figure 4(a) that at
T = 2.8 K after roughly 1 ns a soliton nucleates from the random initial conditions
and performs a random walk in the system. This corresponds qualitatively to the
coherent structure found by Wang et al [23] at this temperature. At T = 7.0 K
(figure 4(b)) also such a localized packet forms, but it is first of all smaller and
after 2 ns it remains confined within a few lattice sites, again corresponding to the
destruction of the coherent structure towards a localized state as reported in {23] for
this temperature. Finally at 11.2 K (figure 4(c)} the packet remains in the middie
of the chain and becomes smaller, again in qualitative agreement with [23]. Thus
Davydov's model appears to be in qualitative agreement with quantum Monte Carlo
results. However, it does not agree quantitatively as figure 5 shows, where we present
the time average (A} of the lattice displacements through 3000000 time steps.
Obviously the structure found has a decreasing width with increasing temperature,
but the peak values are ~ ~0.026 A (2.8 K), ~ —0.028 A (7.0 K) and ~ —0.029 A
(11.2 K), in contrast to the much larger values found in [23] (-0.07, —0.08, —0.09 A,
respectively). Also the increase of this peak value with temperature is much less
pronounced than in the quantum Monte Carlo case. Therefore we conclude that
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Figure 4 Time evolution of the excitation probability a»(¢)}* from an initially randomly
distributed amide-1 quantum as function of site » and time ¢ in cyclic chains of 25 units
and with symmetric interaction, using the [D)) ansarz state and Davydov's model for
temperature effects. Each subfigure (1-6) shows every 5000th of 500000 time steps
r=2I8).@T=28K®T=7T0K ) T=112K

Davydov's [D,} model gives a qualitatively correct picture, but fails to reproduce
exact results quantitatively.

Let us turn now to the partial dressing state of Brown and lvic [17], which as
mentioned above is a special case of the |D,} ansaz with a fixed dependence of the
coherent state amplitudes b, on the site n. Our simulations at 0 K for this state
have shown that the results are qualitatively somewhat similar to | D,) dynamics, but
with dispersing solitary waves appearing at even higher values of X than in zero-
temperature |1} theory [20]. In the case of this state already after 900000 time
steps of 2 f5 convergence of the average (A, ) is obtained. The calculation time for
one of the three temperatures is 8 CPU hours on the same computer as mentioned
above. The energy is conserved (11.2 K) to better than 20 neV, and the norm to
better than 11 ppm. Since in this case no solitons are nucleated, and in the |a, ()}
plots only random behaviour is seen, we show in figure 6 only the averages (A,,) for
the three temperatures under consideration. We see immediately that jn this case
the values from [23] for the peak are underestimated by all three curves, even more
strongly than in |D,) theory. Thus even at 2.8 K, where in [23] coherent structures
were found, the partial dressing ansatz shows a narrow and too small peak for all
three temperatures. The peak does not change for increasing temperature and thus
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Figure 5. Time average {An} over 3000000 time steps (6 ns) of the lattice displacements
Ay in the rotated coordinale system for the system of figure 4 at the same temperatures.

for this ansatz we do not even find qualitative agreement with quantum Monte Carlo
results,
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Figure 6 Same as figure 5 but using the partial dressing ausatz and averaging over only
900000 time steps (1.8 ns).

In figure 7 we again present the average (A, ) over 12000000 time steps (12 ns)
of 1 fs for the |D,) ansarz with our temperature model. The norm was conserved
to better than 0.09 ppm and the computation time was 21.7 CPU hours for one
temperature. We see from the figure that in the |D,) case the peak values of {4,)
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Figure 7. Same as figure 5 but using the [D»} ansatz, our temperature model and
averaging over 12 ns (12000000 time steps of I fs each).

are close o the corresponding | D) state values, but with the wrong tendency: they
decrease somewhat with increasing temperature (2.8 K, —0.0107 A; 7.0 K, —0.0106 A;
11.2 K, —0.0098 A). However, the decrease is not very pronounced. Since there are
no solitary or small-polaron-like structures visible in the {a, |* plots it seems that here
the temperature effects are again strongly underestimated. Finally in figure 8 we show
again the average quantity (A} for the {D,) ansatz state but now using the Langevin
equation model introduced by Lomdahl and Kerr. The time step size is again 1 §§
and we averaged over 24000000 time steps (24 ns). The norm conservation (in the
case of T = 7.0 K for example) was better than 1.5 ppb (parts per billion), the tme
average of the total kinetic energy divided by 0.5N kT oscillated between 0.99 and
1.01 after equilibrium was reached, and the computation time was 24.0 CPU hours for
one temperature. We see from the figure that the result i very close to that obtained
with our model. The peak values are ~0.0111 A for 28 K, —0.0103 A for 7.0 K and
—~0.0105 A for 11.2 K. In all three cases {A,) changed only in the range of roughly
0.1 mA between 16000000 and 24 000000 time steps and thus was converged.

In conclusion it seems that, among the models studied, the |D,} ansaiz
together with Davydov's treatment of temperature is the only one that gives an
at least qualitatively correct picture, although it is quantitatively incorrect and
furthermore there are doubts on the validity of Davydov’s anrsatz for the description
of temperature. However, it secems that Davydov’s ansatz can be viewed as a
qualitatively valid approximation. But there is still a need for alternative models
in order to overcome the conceptual difficulties with Davydov’s ansaiz and to arrive
at quantitatively better approximations, although {D,) theory is closest to QMC of all
models studied.

5. Conclusions

With the classical | D,) ansaiz state we performed in previous work [11-13] dynamic
simulations on one chain using different models for the incorporation of a fnite
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Figure 8. Same as figure 5 but using the |D») ansarz, the Langevin equation and an
averaging over 24 ns (24000060 time steps of 1 5 each).

temperature into the Davydov soliton theory. We varied the parameters W
{hydrogen-bond spring constant) and X (oscillator-lattice coupling constant). We
found that at 300 K the spring constant of the hydrogen bonds should be larger
than roughly 40 N m~' to allow formation and propagation of Davydov solitons in
the system. In calculations with the |D,) ansatz state, which allows for quantum
effects in the lattice and Davydov’s method for incorporation of temperature, we
arrived at roughly the same conclusion [21]. Since Davydov’s method to account for
temperature effects is believed by several workers to be inconsistent with statistical
mechanics, we performed comparisons with exact quantum Monte Carlo results (QMC)
[23]. Since these results are available only for one set of parameters and with
the rather unrealistic symmetric interaction amsatz, we incorporated these features
into our programs to be able to perform comparable calculations. Instead of the
ensemble average in QMC we performed a time average over the lattice displacements
in a rotated coordinate system. We found that the transition from coherent to
localized structures between 2.8 and 11.2 K reported in [23] is reproduced by
Davydov’'s method. However, quantitatively the averaged lattice displacements and
their variation with temperature are underestimated. Thus the method serves as a
qualitatively correct approximation to the dynamics at physiological temperature. The
classical | D,) ansatz underestimates temperature effects even more, while the partial
dressing ansatz [17] Jeads neither to coherent structures below 7.0 K nar to localized
ones above 7.0 K and also underestimates the averaged lattice displacements and
their temperature variation. '

If the spring constant of the hydrogen bonds in protein a-helices is larger than 30-
40 N m~! the Davydov soliton should be able to function at 300 K Interestingly this
conclusion is reached with both of Davydov’s ansatz states and with different models
for temperature effects. Since the usually quoted value of 13 N m~! is derived from
formamide crystals, where the hydrogen-bonded molecules vibrate freely, it should be
too small for proteins. In proteins the hydrogen-bonded sites are embedded in the
covalent backbone of the helix, which becomes distorted due to the vibration. Thus
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we expect the spring constant of a protein normal mode corresponding to hydrogen-
bond stretch to be much larger than that of crystalline formamide, and thus probably
allowing for Davydov solitons to be formed in proteins. Further, following Scott (see
e.g. [14]) the spring constant in one-chain simulations should be chosen larger anyway
in order to resemble three-chain dynamics. The problem of interchain interactions is
the subject of the following paper [26]. However, calculations or measurements on
the spring constant in proteins are necessary to decide finally on the question of the
existence of Davydov solitons.
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