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1. Phys.: Candens. Matter 5 (1993) 803-872. Printed in the UK 

Quantum and temperature effects on Davydov soliton 
dynamics: II. The partial dressing state and comparisons 
between different methods 

Wolfgang Fbrner 
Department of lleoretical Chemistry, and Laboratory of the National Foundation of 
Cancer Research, Friedrich-Alerander University Erlangen-Nurnberg, Egedandslraue 3, 
W-8520 Erlangen, Federal Republic of Germany 

Receivd 24 July 1992, in final form 30 October 1992 

AbslmcL In this rmrk we report Daydov soliton dynamics at 300 K using the partial 
dressing mumz slate introduced by Brown and Ivic. AF in the case of Daqdov's ID1) 
m u m  we found Ulaf the window for the appearance, in the parlial dressing case, of 
slowly dispersing solitary waves in Le parameter space is shifled to smaller non-linearities 
with increasing temperature However. in the panial dressing approximation no stable 
solitons &ow Up. Since the mulls of sludie on the lhermal siability of Daydov 
solitons using different models disagree wth ea& other wen qualitatively, we give some 
comparisons between mulls obtained using four different approximations to Le dynamics 
with quantum Monte Carlo (QMC) wsuk found in the litemture. We 6nd that Davyd0V.s 
method (ID]) state, averaged Hamiltonian) leads to quantitatively i n m m  results, but 
reproduces the qualitative vends  mrrectly. AI1 other models wnsidemd by us (ID*) stale 
wilh thermal phonon population, Langevin equation and partial dressing state) failed to 
reproduce w c  results even qualitatively. 

1. Introduction 

Many biological processes are associated with an energy aansfer through proteins, 
where this energy is released by hydrolysis of adenosine triphosphate (AV). The 
mechanism of this energy transport is not quite clear. As an alternative to electronic 
mechanisms one can assume that the energy is stored as vibrational energy in the 
amide1 mode (CO stretch) of a polypeptide chain. Following Davydov's idea [1,2] 
one can take into account the coupling between the amide-I vibration and the acoustic 
phonons of the lattice. Through this coupling non-linear terms appear in the equations 
of motion. In this way the energy can be transported in solitary waves. Direct 
experimental evidence for the existence of such solitons in proteins is still missing. 
This is due to the complex structure of proteins, which makes such measurements 
very difficult. However, in acetanilide crystals a substructure with chains of hydrogen 
bonds similar to proteins is present. In low-temperature infrared and Raman spectra 
of this material a new band in the anide-I region appears. Up to now this band could 
only be explained with the help of a model similar to the Davydov soliton concept in 
proteins [3]. In this case the CO oscillators are coupled to optical phonons and the 
soliton would be pinned. Recent experiments, however, suggest that a conventional 
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mode strongly coupled to the phonons might be responsible for the observed new 
band [4]. 

At zem temperature it has been confmned theoretically that Davydov solitons exist 
for parameter values appropriate for proteins [SI. The investigation of temperature 
effects led to controversial results. Halding and Lomdahl [6] found stable pulses at 
T = 310 K using classical molecular dynamics for peptide units moving in a Lennard- 
Jones potential. Lomdahl and Kerr [7] and others [SI used the ID,) ansulr together 
with a damping and a noise term to introduce temperature and found no stable 
solitons at 310 K at a specific set of parameters. Bolterauer 191 argued that their 
classical thermalization scheme might lead to too large a transfer of energy into the 
quantum system (oscillators). Cottingham and Schweiaer [IO] applied perturbation 
theory to the Hamiltonian after partial diagonalization and could show (again for 
one set of parameters) that the soliton lifetime at 300 K is too short for biological 
processes. In our previous work 111-131 we prepared the lattice in a thermally excited 
state prior to the soliton starting. We compared our results with those of [7l and 
found agreement between the models if in the Langevin model [7l the lattice is 
thermally equilibrated before the soliton starts. We could show that in a window 
in the parameter space, which might well be realistic for proteins, travelling solitons 
exist at ux) K (see also 1141 for a recent review). 

Brown d d 115l have shown that the ID,) state ansue does not reproduce 
the dynamics of the exactly solvable small-polaron limit (dipole-dipole coupling 
neglected). Davydov [Z] introduced a more sophisticated ansae state (IDl)), which 
allows for quantum effects in the lattice. However, he used the energy expectation 
value for IDl) as classical Hamiltonian function to derive equations of motion [2]. It 
was shown that with these equations IDI) does not reproduce the small-polaron limit 
[IS] either. With these equations of motion and a thermally averaged Hamiltonian, 
Davydov [Z] could show within the continuum limit that solitons exist at 300 K 
Cruzeiro d a1 [I61 reached the same conclusion numerically without making use 
of Davydov's approximations, but using also the thermally averaged Hamiltonian 
as a classical Hamiltonian function. Brown and Ivic 1171 have introduced a third 
unsufz state in which the phase mixing ('dressing') between the amide-I oscillators 
and the kttice phonons is intermediate between the classical IDz) and the quantum 
ID,) ansalz of Davydov. We found 1181 that using this state at T = 0 K no 
travelling solitons exist, but only dispersing waves were found for a non-linearity 
parameter less than XI0 pN (for proteins this parameter is usually assumed to be 
around 60 pN). In this work we present numerical results obtained using the partial 
dressing ansutz at 300 K This ansulr is interesting since at 0 K the results are 
qualitatively similar (appearance of coherent structures at very high non-limearities in 
both models) to those from the better ID,) state and, in contrast to ID,), from the 
partial dressing state analytical results can be derived in the continuum limit [17) 
Further, the inclusion of temperature effects into the partial dressing model is more 
straightfomrd than in the IDl) case. 

Mechtly and Shaw 1191 and Skrmjar ef ul [ZO] could derive new equations of 
motion for IDl) with the help of quantum-mechanical methods. These equations of 
motion reproduce the small-polaron limit. However, in the general case, also this 
unsad state is still approximative. In [19] as well as in our work [IS] it is shown that 
at T = 0 K the window for travelling solitons in the IDl) state occurs in regions of 
the parameter space that cannot be applied to proteins (soliton formation threshold 
X > 150 pN). In the first paper of this series [ZI] we also used the Langrangian 
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method described in 1201 to obtain correct equations of motion for the IDl) msafz 
state from the thermally averaged Hamiltonian derived in [2, 161. In this investigation 
[21,22], as well as in our previous studies using the IDz) state, summarized in [Z], 
we found that Davydov solitons should be stable at 300 K if the spring constant 
of the hydrogen bonds is larger than previously assumed. There are doubts if the 
Davydov concept of using a thermally averaged Hamiltonian to derive equations of 
motion from it is in agreement with statistical mechanics. There is the possibility that 
it may lead to results that are even qualitatively misleading. Therefore we present in 
section 4 a comparison of our results obtained with different models with the exact 
quantum Monte Carlo results of Wang et a1 [Z]. 

2. Methods 

21. The Hamiltonian 

The Hamiltonian as introduced by Davydov [l] is 
- 

h = (Eua:&, - Jn(a:a,+, + a;tt*an) 
n 

In equation (1) 6; (a,) are the usual boson creation (annihilation) operators [SI for 
the amide-I oscillators at sites n (see figure 1). From infrared spectra the excitation 
energy of an isolated amide-I oscillator can be deduced (Eu = 0.205 ev). Usually for 
all parameters in equation (1) site-independent mean values are used. The average 
value for the dipoledipole coupling between neighbouring amide4 oscillators is 
J = 0.967 meV. The average spring constant of the hydrogen bonds is usually taken 
to be W = 13 N m-I from crystalline formamide where the molecules also form 
hydrogen-bonded chains. In our preliminary paper [ll] we used W = 76 N m-', 
which is the spring constant for the hydrogen bonds in the hydrogen carbonate dimer, 
$, is the momentum and +, the position operator of unit n. The average mass M h 
taken as that of myosine (M = 114mp,mp = proton mass). The energy of the CO 
stretching vibration with the oxygen atom taking part in hydrogen bonds is a function 
of the length T of the hydrogen bond (E = Eo + X r ) .  For X the experimental 
estimates are 35 and 62 pN. Ab initio calculations on formamide dimers usually 
lead to X = 30-50 pN (see e.g. [ 141 for a review and references). In the case of 
comparisons with quantum Monte Carlo results 1231 we had to introduce in addition 
to cyclic boundary conditions also the so-called symmetric interaction. In this case 
the oscillator-lattice interaction term is given by (assuming X to be equal for both 
hydrogen bonds neighbouring an amide-I oscillator) 

which is usually considered as rather unrealistic; however, it was used in [U] and 
thus we had to introduce it also in order to make comparison possible. 
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F@m 1. Schematic picture 01 a hydrogen-bonded channel in a prolein. 

The Hamiltonian [1,2] in second quantized form including disorder is given by 

61 (6,) are creation (annihilation) operators for acoustic phonons of wavenumber 
k. The translational mode has to be excluded from the summation. Note that in 
equation (3) we use again the asymmetric interaction model where only the coupling 
of the oscillator n to the hydrogen bond between n and n + 1 in which the oscillator 
takes part is considered. Here wk denotes the eigenfrequency of the normal mode 
k and U contains the normal mode coefficients. w and U are obtained by numerical 
diagonalization of the matrix V with elements 

The form of V implies that we use free chain ends and N units. Cyclic boundaly 
conditions [16], which we need for comparisons with [U], lead to the form 

V,, = {[Wn + Wn-d6nm - Wn6,,,ti - W n - i 6 , , ~ - i } ( ~ , ~ M ~ ~ - ” ’  (5) 

for this mat* where now the site indices have to be taken modulo N .  For the 
symmetric interaction the matrix B is given by 

For the solution of the time-dependent Schrodinger equation in the literature 
different unsua states can be found, as well as different models for the inclusion of 
temperature effects. Those which we applied in this work will be briefly described in 
the following subsections. 
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22 The IDt) ama& state 

The most simple possible ansae is the displaced oscillator state ansa& (IDz)) of 
Davydov [l]: 

Here a',(t) is the probability to find a vibrational quantum at site n, and the b, are 
the coherent state amplitudes for normal mode k. Thus in this ansafz it is assumed 
that the oscillators, regardless of their excitation state, create via the interaction 
the same number of vibrational quanta in the normal modes of the lattice. In this 
approximation the lattice variables are treated classically. In (7). 10). denotes the 
exciton vacuum and IO), the phonon vacuum. Davydov [l, 21 formed the expectation 
d u e  of the Hamiltonian (1) wifh ID2) and used this expectation value as classical 
Hamiltonian function. Kerr 
and Lomdahl [24] have shown that these equations can be obtained also by purely 
quantum-mechanical methods and also for states of more than one quantum 1251. 
Explicit forms of the equations of motion without inclusion of temperature effects 
can be found in 112,131. The lDz) state reproduces the lattice dynamics for J = 0 
correctly, but leads to an incorrect phonon energy [15]. In the next two subsections 
two models for the inclusion of temperature into this amalr state, which are used in 
this work, are described. 

221. Thermal popularion of rhe Lzffice phonons. In our model for the inclusion of 
temperature effects we first solve the decoupled lattice problem ( X  = 0) 1131, which 
is simply a chain of coupled harmonic oscillators. As initial excitations we distribute 
an energy of NkBT (bB is Boltzmann's constant) on the normal modes using Bose- 
Einstein statistics. Half of this energy was distributed as potential, the other half as 
kinetic energy. The analytically given lattice displacements due to thermal motion are 
separated from the ones originating from exciton-phonon coupling (see [12,13,22] 
for details of the formalism). 

In this way the heat bath introduces two oscillating phase factors at J .  These 
oscillations occur in both space and time. The spatial oscillation is due to the normal 
mode coefficients. With increasing temperature the admixture of higher normal modes 
increases, which have more spatial oscillations due to their larger number of nodes. 
Thus temperature has the same net effect as disorder in the site energy E,,, which 
can be played back to exactly the same mathematical structure [12]. However, in 
addition we have here also oscillations in time, which become faster with increasing 
temperature due to the higher frequencies (uk), which become more important. Since 
the phases at J are proportional to the coupling constant X one expects a threshold 
value for X. If X becomes larger than this threshold the soliton should be destroyed. 

22.2. Langevin equation. In the Langevin amaa for the treatment of temperature as 
reported by Lomdahl and Kerr [7,24,25], a damping and a random force term are 
added to the equations of motion: 

W, = -J(antl t 

In this way he obtained the equations of motion. 

+ X(q,,,, - qn-l)an 
(8) 

~ i i ,  = WG,, - 29, t qn-l) t X(iantliz - i~,-,i2) - Mrg,, t ~ , ( t ) .  
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Note that here we have already introduced the symmetric interaction term necessary 
for the comparison with oMC results 123). The correlation function for the random 
forces is 

(qZ, ~ ) F ( o , o ) )  = z ~ k ~ ~ r ~ a ( r ) / a ] a ( t )  (9) 

(Q is the lattice constant). In this case our equation of motion for the lattice 
displacements becomes a Langevin equation. The random forces are assumed to 
follow a normal normal distribution. The effect of the two additional terms in the 
equations of motion is to drive the system into thermal equilibrium with a time 
constant I’. For the time constant we use the lowest non-zero phonon frequency of 
the lattice as suggested by Lomdahl and Kerr [7,24, U] 

23. The ID,) m a &  sfare 

The ID,) m a &  for inclusion of temperature in Davydov’s approximation for solution 
of the time-dependent Schrodinger equation is 

Here again IO), is the exciton vacuum, and Ip,, v) a coherent phonon state. For the 
one-quantum oscillator states used here E, IQ’,~’ = 1 holds. To include temperature 
approximately we assume, as in [16] that a phonon distribution is present in the lattice 
where each normal mode is occupied by wk quanta. All possible distributions 1.) are 
considered in the thermal average of the Hamiltonian. We do not consider a thermal 
distribution of amide-I quanta since at 300 K the Boltzmann factor implies that only 
3 of loo00 amide-I oscillations would be thermally excited. Thus one can neglect a 
possible thermalized soliton distribution in the system too, since presence of solitons 
requires first of all amide-I excitation. Then 

where the b n k ( t )  are the coherent state amplitudes. The equations of motion are 
derived with the Euler-Lagrange formalism following 1201 and are given in detail in 
[18,21]. This method introduced by Davydov was criticized by several authors as being 
inconsistent with statistical mechanics, since equations of motion are obtained from 
a thermally averaged Hamiltonian. However, we feel that it might still be a reliable 
approximation to the real dynamics under physiological temperature. lb investigate 
this we also performed with this method a comparison with quantum Monte Carlo 
simulations. 
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24. The partial dressing amad 

Brown and Ivic [l?] have introduced a modified msafz state, which is called the ID) or 
partial dressing state. The ID) states are a subset of the IDl) states discussed above, 
where a fixed degree of phase mixing between phonons and excitons is incorporated 
[IT: 

- 
Here the operators are given by 

~ k = b k + 6 ~ B n k i ~ d ,  
n 

and 6 is the dressing factor. The coefficients in the ID) state are related to those in 
ID,) by 

bnk(t) = -6B,k + b i ( t )  

In this expression we used the fact that E is real or can be chosen as real via the 
phases of the noma1 modes. The total energy is given by 

k 

and the scaled oscilator coupling by 

The dressing factor 6 can be obtained by minimization of the averaged total energy 
[I71 according to equation (4.12) of [17]. We have computed 6 for T = 0 K in a 
periodic chain. The results [18] show that for 0.8 meV < J < 1.2 meV 6 vanes 
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between 0.76 and 0.97, where 6 decreases with increasing J. With increasing non- 
linearity 6 increases also; however, the larger W becomes, the smaller is the variation 
in 6, and the larger is its value. Thus for increasing J and decreasing X and W the 
ID) state approaches the I Dz) state (6 = 0), while for decreasing J and increasing X 
and W the ID) state approaches the small-polaron limit (6  = 1). For J = 0.967 meV 
and W = 10 N m-I, 6 varies by N 0.15 in the range 0 < X < ux) pN. For X = 0, 
6 U 0.7% is obtained; and for X = 200 pN, 6 N 0.944. For X = 60 pN we obtain 
in agreement with Brown and Ivic [17] 6 N 0.81. Thus for the usually used values 
of the parameters the ID) state is closer to the small-polaron limit than to the ID2) 
state. 

Brown and Ivic [ I 1  derived the equations of motion for the ID) state with the 
help of the time-dependent variational principle. However, in their equations for the 
time derivative of a; this variable occurs also on the right-hand side as an integrand. 
Thus numerical simulations would be ditfcult The term that leads to technical 
difficulties appears in the equation for bk( l )  in [17]: 

Integration by parts yields 

Thus b(k(t) is finally given by 

For numerical simulations a suitably small time step T is introduced. During 
this time step (or half of it as in the Runge-Kutta method) the integrand Q linearly 
interpolated. Thus at time IT we obtain 

b(k(l) = A,exp(-iw,lr)+ Ck(I) -L,exp(- iw, /~)CBnaDnk( l )  (22) 
n 

where 



Note that Re[.] and 1m[1] denote real and imaginary part, respectively, of quantity 
I. From the time derivative of a;(Z) then &(l  f 1) can be computed and then 
b i ( l +  1). In practice, as usual a gauge transformation is performed, 

a z ( t )  = a:(t)exp[i(E,/fi) t]  (26) 

which removes the term containing E, and thus the fast oscillating part of a',. Finally 
from b,, = -6Bnk + 6i the momenta p, and displacements q, of the lattice units 
can be obtained: 

P , ( O  = ~ ( 2 ~ ~ , ~ , ) " Z ~ , k l a , ( ~ ) 1 2 ~ l b , h ( ~ ) l  
m k  

'Typically a time step of r = 5 fs was used in our simulations at T = 0 K [U] with 
a RungeKutta method mrrect up to fourth order. In typical cases (M = 114mp, 
W = 13 N m-*, J = 0.967 mey X = 240 pN) for a periodic chain of 50 units within 
70 ps the error in total energy was less than 50 peV (r 0.02% E,) and the norm 
is conserved to better than 4 x In this case 6 = 0.9016 and the translational 
mode was kept unpopulated. 

As already discussed in the paper by Brown and Ivic 1171 the inclusion of 
temperature enters in the determination of 6, where a thermal average is involved, 
via the quantity 

and thus in J, in form of a DebyeWaller factor 

Jk(T) = J ,  exp[-6*sn(t)]. 
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Further in the equations of motion temperature appears directly in the phonon initial 
data 6;.(0). Approximately these can be obtained in the same way as for ID2) 
dynamics. One can populate all modes (except the translational one) of the lattice 
corresponding to a Bose-Einstein distribution and solve the dynamical problem of 
the decoupled lattice. With p ,  and q, at some arbitrary time to (the results do 
not depend on t, as shown previously [ll]) one can calculate (for uniform masses: 
M ,  = M )  

and use these values as input for the time simulation. As in the case of IDl) dynamics 
one has to note that, the larger X is, the smaller the time step has to be chosen. 

In previous work we have shown [18] that in contrast to IO2) and IDl) no real 
travelling soliton shows up. Only from X = 180 pN can one speak of a slowly 
dispersive solitary wave. For X = 260 pN a pinned soliton is observed numerically 
at T = 0 IC For the ID) state the parameter space that allows soliton formation 
& very small and at rather large values of X. Thus if the ID) state were to be 
a better approximation to the exact solution than IDz) or ID,) one would have to 
conclude that the Davydov soliton cannot exist in proteins already at T = 0 K 
However, the ID) states are a subset of the IDl) states and the IDl) equations 
[18,20] are derived with the time-dependent variational principle as well as the ID) 
states [17]. Therefore the ID,) dynamics should be a better approximation to the 
exact ones than the ID) dynamics. If the ID) dynamics were to approximate the 
exact solution better, then ID,) dynamics would numerically reduce to ID) dynamics, 
which is not the case. But since the general trend concerning soliton stability regions 
is qualitatively similar in ID) and IDl) dynamics, the partial dressing state is still an 
important approximation since in contrast to IDl) it allows analytical considerations 
in the continuum limit [17]. Therefore it is worth while to study temperature effects 
also in the ID) approximation, which is the subject of the next section. We could 
reproduce the 6 value for T = 0 K given in 1171 (cyclic chain, symmetric interaction, 
numerical calculation of eigenvectors and eigenfrequencies) for a chain of loo0 (6 
depends on the chain length) sites to an accuracy of three digits and for T = 300 K 
we find 6 = 0.43. 

3. Wefts of temperature in the partial dressing state 

We have performed dynamic simulations on chains of 50 units starting from a one-site 
excitation at unit 49 at a temperature of 300 K using the asymmetric interaction wsutz 
and free chain ends. The time step was 5 fs and the norm was conserved during a 
typical simulation through 24 ps (M = 114mp, J = 0.967 meV, X = 140 pN, 
W = 30 N m-l, T = 300 K) to better than 4 x the energy error was less 
than 70 pew In this case the dressing factor was 0.648 and the simulation time for 
one run on our Cyber 995E computer was 600 cpu seconds. These errors become 
somewhat larger for larger X and very much smaller for smaller X (e.g. in case of 
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X = 60 pN the dressing factor is 0.588, the norm error less than 3 x and the 
energy error less than 0.3 pev). We vaned the values of W and X. The results are 
shown in figure 2 where each circle aorresponds to a simulation performed. 

I00 

0 0 0 0 0 0  

50 100 150 200 K O  300 
Y(pN) 

7 0 -  0 0 0 

E4 . 
:so- 0 0 0 K Y W  

3 0 -  0 0 0 0 w F( X @  
I 

(b) T - 300K 
10- 0 0 0 6 l D  

2 0  60 100 I40 180 

1 ( P W )  

Elgum 2 S w e y  of the (X, W )  parameter space using the partial dressing model at 
(a) T = 0 K (b) T = 3w K (open cirdes denote dispersive behaviour of lhe initial 
excitation, crossed black circles indicate formation of slowly dispering solitary waves and 
mssed open c i r ~ l s  indicate pinning of the initial excitation). All simulations slarted 
from a one-site excitation and the asymmetric interaction as well as free chain ends were 
used. 

We show the results for 300 K together with those for 0 K published previously 
[IS]. It is obvious from the figure that for both temperatures no true solitons could 
be observed. However, in the ID) state model the same phenomenon as for the ID,) 
ansa& is present: the soliton or in this case solitary wave stability window is shifted 
to smatler values of X when the temperature increases. AIso at high temperature the 
region of pinned excitations is much larger than at 0 IC The border between regions 
of dispersing and localized excitations is for both temperatures roughly linear. This 
border line becomes shifted by roughly -80 pN in X in a nearly parallel way when 
temperature increases. Thus the basic discrepancies between ID) and IDl) are, first, 
that in the ID) model only solitary waves show up while in the ID,) state also stable 
solitons are present, and, secondly, that the shift of solitary wave stability m smaller 
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Figure 3. l i m e  evolution of the excitation 
probabiliIy lan[t)Jz eom an initial excitarion at 
site 49 in a chain of 30 uniis as function of site at 
3w K, using the partial dressing asymmetric 
interaction, free chain ends, W = 30 N m-l 
and (a) ,Y = 60 pN, (b) X = IW pN and (c) 
X = 140 pN. 

X values with increasing temperature is less pronounced in the ID) state compared 

In figure 3 we show some explicit examples of the dynamics obtained for 
W = 30 N m-l and some values of X. Figure 3(u) shows an example of clearly 
dispersive behaviour for X = 60 pN. For X = 100 pN (figure 3(b)) we see that a 
dispersive solitary wave is formed, which has already lost most of its intensity after 
24 ps. At X = 140 pN (figure 3(c)) the solitaly wave is more stable and its velocity 
much reduced. However, it is obvious that it is still slowly dispersing. Close to the 
end of the simulation it seems that it splits into two separate waves where one is 
moving further into the chain while the second one seems to be pinned. 

Obviously there is some very qualitative similarity between the results obtained 
with the ID) and the IDl) state. The advantages of the 10) state unsurz are 
clearly that the introduction of temperature effects is straightfonvard and that in the 
continuum limit analytical solutions can be obtained. Both are not the case for the 
IDl) state unsurz. However, it seems from the results that the higher flexibility of the 
ID,) state conceming the coherent state amplitudes leads to conclusions that differ 
considerably from those drawn from the 10) state simulations. Therefore it might 
be dangerous to use, for example, analytical ID) state results m discuss properties of 
Davydov solitons or the question of their thermal stability. However, the temperature 
model introduced by Davydov for IDl) is considered to be inconsistent with statistical 
mechanics. Since it might still give qualitatively correct results we present in the next 
section a comparison of different dynamic models for the inclusion of temperature 
effects with known exact results from quantum Monte Carlo calculations reported by 

to 101).  

m n g  el ul [U]. 

4. Comparisons with exact quantum Monte Carlo results 

M n g  el a1 [U] reported the results of quantum Monte Carlo (QMC) simulations on 
the Davydov Hamiltonian. These results should describe the equilibrium state in 
principle exactly, restricted only by numerical inaccuracies, which can be controlled. 
They applied the parameters usually used in the literature ( J  = 0.967 mey 
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W = 13 N m-I, X = 62 pN, M = 114m,), cyclic boundaries, the symmetric 
interaction, and Mgs of 25 sites. They determined for each of their configurations 
the excitation site no, and rotated all coordinates such that this site is in the middle 
of their lattice. Then they computed the average (A,) of the lattice displacements 

An = q n + l -  qn-1. (31) 

Here n refers to the rotated coordinate system, where the excitation site no is always 
in the centre. We implemented cyclic boundaries and symmetric interaction into 
our time simulation programs, started from a random distribution of one amide-I 
vibrational quantum and performed a time average of the same quantity with which 
M n g  et al performed their ensemble average. We determined nu in each time step 
as the site where the excitation probability lan(t)12 is largest. In this way after 
a sufficient number of time steps (convergence of (A, , ) )  we should obtain results 
comparable with those of M n g  d a1 [U]. We want to emphasize again that, in 
order to make this comparison possible, we used for all computations reported below 
the symmetric interaction and cyclic boundary conditions. In [U] it is reponed 
that at 28 K coherent structures are obtained. In this case from their figure 1 
we estimate a maximum of (A,) at n = nu of rr -0.07 8, For T = 7.0 K 
they observe that this coherent structure starts to break down, leading at 11.2 K to 
localized structures comparable to small polarons (this might also be interpreted 
as an Anderson localization originating from increasing disorder due to thermal 
fluctuations). For 7.0 K the maximum of (A,) is found to be Y -0.08 8, and 
Y -0.09 8, for 11.2 K [U]. The latter value is already close to the infinite-temperature 
limit of 2: -0.095 8, [U]. 

In figure 4 we show our results obtained with the 10,) state and Davydov's model 
for temperature effects, but using correct equations of motion as given in the previous 
section. We followed the dynamics over a period of 6 ns, corresponding to 3000000 
time steps. The calculation for one temperature had to be done in six IUIIS, where 
only one of these six IUW already requires 7.7 CPU hours computation time on a 
Cyber 995E computer from Control Data Corporation (500000 time steps each run). 
T$pically (T = 11.2 K) the error in total energy in such runs is Y 3 neV and the 
norm e m r  is less than 0.05 ppm (parts per million). We see from figure 4(u) that at 
T = 2.8 K after roughly 1 11s a soliton nucleates from the random initial conditions 
and performs a random walk in the system. This corresponds qualitatively to the 
coherent structure found by W n g  et a1 [23] at this temperature. At 7' = 7.0 K 
(figure 4(b)) also such a localized packet forms, but it is first of all smaller and 
after 2 ns it remains confined within a few lattice sites, again corresponding to the 
destruction of the coherent structure towards a localized state as reported in [U] for 
this temperature. Finally at 11.2 K (figure 4(c)) the packet remains in the middle 
of the chain and becomes smaller, again in qualitative agreement with [U]. Thus 
Davydov's model appears to be in qualitative agreement with quantum Monte Carlo 
results. However, it does not agree quantitatively as figure 5 shows, where we present 
the time average (A,) of the lattice displacements through 3000000 time steps. 
Ohviously the structure found has a decreasing width with increasing temperature, 
but the peak values are 2: -0.026 8, (2.8 IC), = -0.028 8, (7.0 K) and e -0.029 8, 
(11.2 K). in mntrast to the much larger values found in 1231 (-0.07, -0.08, -0.09 .&, 
respectively). Also the increase of this peak value with temperature is much less 
pronounced than in the quantum Monte Carlo case. Therefore we conclude that 
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-re 4 lime evolution of the excilation pmbabili,ly lo.(t)lz Gum an initially randomly 
distributed amide-1 quantum as funclion of site n and time t in cyclic chains of 25 uniu 
and with symmetric interaction, using the 101) IDUUQ slate and Davydov's model for 
temperature effecls. Each subfigure (1-5) shows eveq 5000th of 500(1(30 Lime steps 
( r = Z  6). (a) T =  2.8 K; (b) T= 7.0 K; (c) T =  11.2 K 

Davydov's IDl) model gives a qualitatively correct picture, but fails to reproduce 
exact results quantitatively. 

Let us tum now to the partial dressing state of Brown and Ivic 1171, which as 
mentioned above is a special case of the ID,) umu& with a k e d  dependence of the 
coherent state amplitudes b,,, on the site n. Our simulations at 0 K for this state 
have shown that the results are qualitatively somewhat similar to IDl) dynamics, but 
with dispersing solitary waves appearing at even higher values of X than in zero- 
temperature IDl) theory 1201. In the case of this state already after 9ooooO time 
steps of 2 I3 convergence of the average (A,)  is obtained. The calculation time for 
one of the three temperatures is 8 e u  hours on the same computer as mentioned 
above. The energy is conserved (11.2 K) to better than 20 ney and the norm to 
better than 11 ppm. Since in this case no solitons are nucleated, and in the la,,(t)lz 
plots only random behaviour is seen, we show in figure 6 only the averages (A,,) for 
the three temperatures under consideration. We see immediately that in this case 
the values from [23] for the peak are underestimated by all three curves, even more 
strongly than in 10,) theory. Thus even at 28 K, where in 1231 coherent structures 
were found, the partial dressing m u &  shows a narrow and too small peak for all 
three temperatures. The peak does not change for increasing temperature and thus 



Figure 5. %me average (A.) over 3CGUo00 time steps (6 DS) of the lattice displacements 
A, in the rotated mordinate system tor the system of 6gure 4 at the same temperatures. 

for this ansatz we do not even find qualitative agreement with quantum Monte Carlo 
results. 

Figure 6. Same as figure 5 but using the partial dressing mum and avelaging over only 
woo00 time steps (1.8 DS). 

In figure 7 we again present the average (A,,) over 12OOOooO time steps (12 ns) 
of 1 fs for the IDz) ansau with our temperature model. The norm was consewed 
to better than 0.09 ppm and the computation time was 21.7 CPU hours for one 
temperature. We see from the figure that in the ID2) case the peak values of (A , )  
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F@m 7. Same as figure 5 but using the ID?) man, our temperature model and 
averaging over 12 11s (12aOOaOO time steps of 1 b each). 

are close to the corresponding ID) state values, but with the wrong tendency: they 
decrease somewhat with increasing temperature (2.8 K, -0.0107 & 7.0 K, -0.0106 k 
11.2 K, -0.0098 A). However, the decrease is not very pronounced. Since there are 
no solitary or small-polaron-like structures visible in the la,[' plon it seems that here 
the temperature effects are again strongly underestimated. Finally in figure 8 we show 
again the average quantity (A,) for the ID,) awn state but now using the Langevin 
equation model introduced by hmdahl  and Kerr. The time step size is again 1 fs 
and we averaged over 24000000 time steps (24 ns). The norm conservation (in the 
case of T = 7.0 K for example) was better than 1.5 ppb @ a m  per billion), the time 
average of the total kinetic energy divided by 0.5NkBT oscillated between 0.99 and 
1.01 after equilibrium was reached, and the computation time was 24.0 CPU hours for 
one temperature. We see from the figure that the result is wry close to that obtained 
with our model. The peak values are -0.0111 8, for 28 K, -0.0103 8, for 7.0 K and 
-0.0105 8, for 11.2 K. In all three cases (A,) changed only in the range of roughly 
0.1 n d  between 16 000 000 and 24 MM MM time step and thus was converged. 

In conclusion it seems that, among the models studied, the ID,) ansatz 
together with Davydov's treatment of temperature is the only one that gives an 
at least qualitatively correct picture, although it is quantitatively incorrect and 
furthennore there are doubts on the validity of Davydov's unsan for the description 
of temperature However, it seems that Davydov's ansaa can be viewed as a 
qualitatively valid approximation. But there is still a need for alternative models 
in order to Overcome the conceptual difficulties with Daydov's ansatz and to arrive 
at quantitatively better approximations, although ID,) theory is closest to QMC of all 
models studied. 

- 

5. Conclusions 

With the classical ID2) unsab state we performed in previous work [ll-131 dynamic 
simulations on one chain using different models for the incorporation of a finite 
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Figure B Same as RguR 5 but using the ID*) mmQ, the Langevin equation and an 
averaging over 24 IIS (24030030 time steps of I k each). 

temperature into the Daqdov soliton theory. We varied the parameters W 
(hydmgen-bond spring constant) and X (oscillator-lattice coupling constant). We 
found that at 300 K the spring constant of the hydrogen bonds should be larger 
than roughly 40 N m-I to allow formation and propagation of Davydov solitons in 
the system. In calculations with the IDl) MSU& state, which allows for quantum 
effem in the lattice and Davydov's method for incorporation of temperature, we 
arrived at mughly the same conclusion [21]. Since Davydov's method to account for 
temperature effects is believed by several workers to be inconsistent with statistical 
mechanics, we performed comparisons with exact quantum Monte Carlo results (QMC) 
[23]. Since these results are available only for one set of parameters and with 
the rather unrealistic symmetric interaction onmu, we incorporated these features 
into our programs to be able to perform comparable calculations. Instead of the 
ensemble average in QMC we performed a time average over the lattice displacements 
in a mtated coordinate system. We found that the transition from coherent to 
localized structures between 28 and 11.2 K reported in [U] is reproduced by 
Daqdov's method. However, quantitatively the averaged lattice displacements and 
their variation with temperature are underestimated. Thus the method serves as a 
qualitatively correct approximation to the dynamics at physiological temperature. The 
classical ID,) m u &  underestimates temperature effects even more, while the partial 
dressing MSU& [17] leads neither to coherent structures below 7.0 K nor to localized 
ones above 7.0 K and also underestimates the averaged lattice displacements and 
their temperature variation. 

If the spring constant of the hydrogen bonds in protein a-helices is larger than 30- 
40 N m-* the Davydov soliton should be able to function at 300 K Interestingly this 
conclusion is reached with both of Davydov's unsulz states and with different models 
for temperature effects. Since the usually quoted value of 13 N m-I is derived from 
formamide crystals, where the hydrogen-bonded molecules vibrate freely, it should be 
too small for proteins. In proteins the hydrogen-bonded sites are embedded in the 
covalent backbone of the helix, which becomes distorted due to the vibration Thus 
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we expect the spring constant of a protein normal mode corresponding to hydrogen- 
bond stretch to be much larger than that of aystalline formamide, and thus probably 
allowing for Davydov solitons to be formed in proteins. Further, following Scott (see 
e.g. [14]) the spring constant in one-chain simulations should be chosen larger a n y a y  
in order to resemble three-chain dynamics. The problem of interchain interactions is 
the subject of the following paper (261. However, calculations or measuremens on 
the spring mnstant in proteins are necessary to decide finally on the question of the 
existence of Davydov solitons. 
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